SMCis: An Effective Algorithm for Discovery of Cis-Regulatory Modules
نویسندگان
چکیده
The discovery of cis-regulatory modules (CRMs) is a challenging problem in computational biology. Limited by the difficulty of using an HMM to model dependent features in transcriptional regulatory sequences (TRSs), the probabilistic modeling methods based on HMMs cannot accurately represent the distance between regulatory elements in TRSs and are cumbersome to model the prevailing dependencies between motifs within CRMs. We propose a probabilistic modeling algorithm called SMCis, which builds a more powerful CRM discovery model based on a hidden semi-Markov model. Our model characterizes the regulatory structure of CRMs and effectively models dependencies between motifs at a higher level of abstraction based on segments rather than nucleotides. Experimental results on three benchmark datasets indicate that our method performs better than the compared algorithms.
منابع مشابه
CisModule: de novo discovery of cis-regulatory modules by hierarchical mixture modeling.
The regulatory information for a eukaryotic gene is encoded in cis-regulatory modules. The binding sites for a set of interacting transcription factors have the tendency to colocalize to the same modules. Current de novo motif discovery methods do not take advantage of this knowledge. We propose a hierarchical mixture approach to model the cis-regulatory module structure. Based on the model, a ...
متن کاملA New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model
The discovery of cis-regulatory modules (CRMs) is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. Com...
متن کاملA probabilistic method to detect regulatory modules
MOTIVATION The discovery of cis-regulatory modules in metazoan genomes is crucial for understanding the connection between genes and organism diversity. RESULTS We develop a computational method that uses Hidden Markov Models and an Expectation Maximization algorithm to detect such modules, given the weight matrices of a set of transcription factors known to work together. Two novel features ...
متن کاملDecoding human regulatory circuits.
Clusters of transcription factor binding sites (TFBSs) which direct gene expression constitute cis-regulatory modules (CRMs). We present a novel algorithm, based on Gibbs sampling, which locates, de novo, the cis features of these CRMs, their component TFBSs, and the properties of their spatial distribution. The algorithm finds 69% of experimentally reported TFBSs and 85% of the CRMs in a refer...
متن کاملGene Set-Based Module Discovery Decodes cis-Regulatory Codes Governing Diverse Gene Expression across Human Multiple Tissues
Decoding transcriptional programs governing transcriptomic diversity across human multiple tissues is a major challenge in bioinformatics. To address this problem, a number of computational methods have focused on cis-regulatory codes driving overexpression or underexpression in a single tissue as compared to others. On the other hand, we recently proposed a different approach to mine cis-regul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016